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I. Introduction 

The use of NMR relaxation measurements to obtain dy­
namic information is based on models which relate the calcu­
lated spectral densities to the relevant physical parameters. 
Models currently in use can be divided into two categories: (1) 
diffusion over a continuum (isotropic or anisotropic) as de­
scribed by a diffusion equation1 ~9 or by collision theory10 and 
(2) jumps between several discrete states. The second class has 
been developed extensively to describe the relaxation effects 
of jumps between discrete states in a variety of solids" and 
group-theoretical methods have recently been applied to obtain 
general solutions.12 Applications to macromolecules for which 
overall diffusion is also important have also been devel­
oped.'' '3^17 We have recently shown that a two-state jump 
model superimposed on overall isotropic diffusion provides a 
satisfactory approach for the calculation of spin lattice re­
laxation rates due to ring puckering in proline-containing 
peptides.18 Both approaches have been generalized to a series 
of successive rotations14 '19 or jumps14-17,20 applicable to 
complex biomolecules. In the present study, a third type of 
model is considered: free internal diffusion over a restricted 
range imposed by boundary conditions on the solution of the 
diffusion equation. Computationally, this approach differs 
from previous work21 in that the relevant autocorrelation 

(21) S. G. Kukolich, Phys. Rev., 156, 83 (1967). 
(22) W. H. Flygare and J. Goodisman, J. Chem. Phys., 49, 3122 (1968); T. D. 

Gierke, H. L. Tigelaar, and W. H. Flygare, J. Am. Chem. Soc 94, 330 
(1972); T. D. Gierke and W. H. Flygare, ibid., 94, 7277 (1972). 

(23) R. Ditchfield, D. P. Miller, and J. A. Pople, J. Chem. Phys., 54, 4186 
(1971). 

(24) A. Pines, M. G. Gibby, and J. S. Waugh, J. Chem. Phys., 59, 569 (1973); 
Chem. Phys. Lett., 15, 373 (1972). 

(25) W. T. Raynes, A. D. Buckingham, and H. J. Bernstein, J. Chem. Phys., 36, 
3481 (1962). 

(26) K. Jackowski and W. T. Raynes, MoI. Phys., 34, 465 (1977); B. Tiffon and 
J. P. Doucet, Can. J. Chem., 54, 2045 (1976); D. Cans, B. Tiffon, and J. E. 
Dubois, Tetrahedron Lett., 2075 (1976). 

function must be expressed as an infinite series of exponentials. 
Fortunately, the series is rapidly convergent so that typically 
only a few terms need be considered. It is thus relatively easy 
to obtain numerical results for the desired relaxation param­
eters. 

The need for an understanding of the contribution of re­
stricted diffusion to nuclear magnetic relaxation rates arises 
primarily in the study of complex biomolecules in which re­
stricted internal motion of parts of the molecule is the rule 
rather than the exception. For example, recent 13C N M R 
studies of 90%methionine-we//i>>/- 13C labeled dihydrofolate 
reductase from S.faecium22 indicate that internal motion in 
addition to the expected rapid methyl rotation is significant. 
Alternatively, the data cannot be explained by using a model 
which assumes free (unrestricted) rotation about two or more 
bonds. It was also found that sharper peaks exhibit longer 13C 
T\ values and somewhat larger NOE values than broader 
peaks. However, models based on one or more free internal 
rotations predict that if the overall motion is in the slow tum­
bling region, faster internal motion leads to longer T\ values 
but smaller NOE values.7'23 Thus, explanations of these results 
using models in which only the rates of internal or overall 
motion can be varied cannot accommodate the data. The 
present calculation, while employing idealized boundary 
conditions, provides a reasonable interpretation of this data 
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Figure 1. (a) Illustration of the angle 0 defined by the internal rotation 
axis assumed to be coincident with a carbon-carbon bond and by the C-H 
relaxation vector. Note: Since |d,-,;(/3)|2 = | d,--,(180° - 0)\2, spectral 
densities of the form of eq 16 and 25 are valid for 0 or 180° - 0. (b) View 
parallel to the C-C bond of (a) illustrating the azimuthal angle <t> and the 
boundaries at 4> - ±6, (c) Illustration of the model used for calculation 
of relaxation parameters for the methionine methyl carbons in dihydro-
folate reductase. The diffusion indicated by D\ is assumed to be restricted 
and the diffusion indicated by £>2 unrestricted so that the spectral density 
has the form of eq 25. (d) Illustration of the diffusion model described by 
eq 30 and 31. The restricted motion about the second bond is described 
by 8 - 0 and 0' = -0 so that the internal diffusion axis is parallel to the 
C-H relaxation vector. In this limit, the internal motion does not affect 
the relaxation times. 

in terms of free methyl rotation and restricted motion about 
the preceding CH2-S bond. 

II. Theory 

In this section we consider the problem of restricted internal 
motion about an axis making an angle /3 with the relevant C-H 
relaxation vector (Figure la). Overall molecular motion is 
assumed to be isotropic and a dipolar relaxation mechanism 
for the 13C nuclei due to interaction with directly bonded 
protons is assumed to be dominant. There are substantial 
precedents for the validity of these assumptions.6-24 26 The 
relevant autocorrelation function can then be written in the 
form3-14 

G ( O = E e-6Do'|daOtf)|2<;e'''j[*(O)-0(')1> (D 

In the above expression, d„o are reduced second-rank Wigner 
rotation matrices,27 /3 is defined above, DQ is the isotropic 
diffusion coefficient, and 0 represents an azimuthal dis­
placement of the C-H vector about the effective rotation axis. 
Since we wish to consider a more general problem involving 
both free and restricted rotations in a subsequent section, we 
define a matrix Amm ' by analogy with the unrestricted rotation 
problem to be 

= leimit>(Q)(t>e-im'tt>(t}\ (2) 

Thus, the ensemble average appearing in eq 1 is given by Aa,a. 
This ensemble average can be written in the form 

\ ) — 7T %) ~ 71 

0im<t>Qp — im '<»</>(0o)p(0,,//0o,O) d0od0, 

(3) 

where the abbreviations 0o = 0(0) and 4>, = 0(f) have been 
used, p(0o) is the probability that 0 initially has the value of 
0o, and p(0,,//00,0) is the conditional probability that if 0 was 
initially equal to 0o, it will be equal to 0, at time /. The cal-
culational problem thus is reduced to obtaining the required 
conditional probability. 

The model used for this calculation is based on the angular 

diffusion equation 

3^(0,0 = D dm<j>,t) 
dt a2 sin2 /3 d02 

subject to the boundary conditions 

and to the initial condition 

\K0, t = 0) = 5(0 - 0o) 

The boundary condition, eq 5, prevents diffusion across the 
boundary (Figure lb). As a result of the initial condition, 
\p(<t>, t) becomes the desired conditional probability, 
\p{4>t,t/4>o,0). In eq 4 D (cm2/s) is the diffusion coefficient and 
a is the length of the C-H vector for the model illustrated in 
Figure 1. Equation 4 has the general solution 

(4) 

(5) 

(6) 

= [ClCOS((^) + C2Sin((7^)>-'/T + c 

where Ci, C2, and C3 are constants and 

D1 = D/(a2 sin2 /3) 

3 

(7) 

(8) 

The above definition of the internal diffusion coefficient is 
identical with that used in the free internal rotation calculation. 
Application of boundary and initial conditions is facilitated 
by transforming to the coordinate system 0 —» 0 -I- 6. Trans­
forming back to the original system then gives 

M0„t/0o.O) = ^ + \ t cos ^ J (0o + 6) 

X c o s ^ ( 0 , + 0)exp(-//T„) (9) 

where 

rn = 402ZinVD1) (10) 

We note that in the limit t —- OT, this result gives ^(0,,//00,O) 
-* 1/20 so that given enough time, the probability becomes 
uniformly distributed over the interval —8<4><6. Thus, the 
a priori probability that 0 = 0o at time f = 0 is given by 

/?(0o) = l/20 (U) 

Using the above results in eq 3 then gives (Appendix A) 

sin md sin m'6 
mB m'6 

2 «=1 

in (md—— J sin (md +—-) 

mv - • md + -

sin (""-¥) , ,„ .*• ("' '+¥) 
m'tf - • 

nir m'6 + rnr 
2 2 

exp(-r/T„) (12) 

The above expression can be written in the form 

= E E(m,n)E(m',n) exp(—t/r„) 
n=0 

(13) 
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where E(m,n) is defined by the first term in eq 16 contributes to the sum, we have 

E(m,Q>) = 
sin mO 

m6 

E(m,n ^ 0) 

1 
2i/2 

sin (me-^f) sin (me + ̂ ) ] 

mo--
nir me + nir 

(14) 

This expression gives the required Am>m< matrix for the re­
stricted motion calculation. It may be compared with the 
analogous expression for the unrestricted internal diffusion 
calculation: 

A /F I R = r> exp(-m2Z)j/) (15) 

where FIR stands for free internal rotation and D1 is given by 
eq 8. Although the restricted motion problem leads to an in­
finite series for the autocorrelation function, the terms in eq 
12 drop off as 1 /n2 leading to rapid convergence of the sum so 
that in practice numerical results are readily obtained. We also 
note the result for 0 — 0: E(m,0) — 1, and for n ^ 0 Tn -> 0 
so that these terms can be dropped. Thus, in this limit, we can 
write E(m,n) -* <5„]0-

The spectral densities used to calculate the required relax­
ation times are obtained by substitution of eq 13 into eq 1 and 
Fourier transforming the result: 

•/(«) = E E \Aa0(P)\2\E(a, n)\2 T / ( 1 + W 2 T 2 ) (16) 
a = -2 «=0 

T = (6D0 + n2Tr2Di/4e2)- (17) 

Numerical Results. Behavior under Limiting Conditions 

Using the spectral density equations 16 and 17 obtained in 
the previous section, numerical results were obtained corre­
sponding to values of DQ between 106and 10 1 0S - 1 (r0 = 1.67 
X 10~7 to 1.67 X 10" s), D1 in the range lO'- lO1 ' s" 1 and 
several typically encountered values of/3. The carbon resonance 
frequency was set to 25.2 MHz. T\, T2, and NOE values were 
obtained using eq 18-20: 

1 Nyc
2yH2h2 

T, " 10/-CH1 6 [7(«c - wH) + 3/(«c) 

1 _ Ny^yrfh2 

T2 20/-CH6 

N O E = 1 + T ? 

+ 6J(UH+ uc)] (18) 

[ / ( « H - wc) + 3J(o>c) + 6J (WH + «c) 

+ 4/(0) + 67(wH)] (19) 

= 1 + 6 / ( W H + «c) - / ( W H -TH 
Tc L/(wH - o>c) + 3J(wc) + 

WH - Wc) "I 
h 6J (WH + Wc)J 

(20) 

In the above equations, N is the number of directly bonded 
protons. Cross correlation effects have not been considered in 
the present calculation. In general, such effects lead to non-
exponential spin lattice relaxation; however, the appropriately 
weighted initial relaxation rate is that calculated neglecting 
these effects.23'28 

Before considering the detailed dependence of the relaxation 
times on the various motional parameters, we note several 
qualitative features of the model. First, in the limit 6 -*• 0, 
calculated spectral densities and consequently T\, T2, and 
NOE values all approach the values obtained in the absence 
of internal motion. In particular, using the result E(a,0) —- 1 
as well as the observation that n2T2D,/462 — » so that only 

/ (w)- E E \da0m
2\E(a,n)\2 

•0 <j = - 2 « = 0 1 + W2T2 

= E | d a o ( / 3 ) | 2 — 1 T l = TT~r~2 ( 2 1 ) 

a=-2 1 + WZTZ 1 + WZTZ 

where the sum rule for the reduced Wigner rotation matrices 
has been used.27 

In contrast to the above result, /(w) does not approach the 
value of free internal rotation in the limit 26 = 360°. This re­
flects the fact that although any value of 6 is now permitted, 
the boundary conditions become a spike at 6 = 180° preventing 
diffusion from 18O+ to 18O-. However, in the limit D\ -» <*>, 
so that only the n = 0 term in the sum in eq 16 is significant, 
the limit 20 = 360° leads to the result 

/(w) 
/3 c o s 2 / 3 - 1\2 

1 + w2r2 ' 
(6D0) - i (22) 

/ ( w ) D r 

which is identical with the free internal rotation result in the 
limit D\ —*• co. 

More generally, in the limit Dx —>• °= but imposing no re­
strictions on 4>, the n = 0 term in eq 16 is dominant leading to 
the result 

• ( 3 C 2 L ^ + 3 sin2ftcos2^y 

+ W^'hiTX* ' = 1/(6D°> <23) 

The above expression includes a (sin 6/e)2 term which de­
creases monotonically in the region 0 < e < 180° as well as a 
(sin 2e/26)2 term which leads to nonmonotonic behavior in this 
region. The latter term arises from the exp(2/$) term in the 
Hamiltonian. The relative importance of the (sin (?) /6 and (sin 
20)/20 terms is dependent on /3. Thus, the ratio of the third 
term to the second in eq 23 increases as sin2 /3/cos2 /3 increases 
and is, therefore, maximal for /3 = 90°. Nonmonotonic changes 
in the relaxation parameters as a function of 6 are therefore 
most pronounced for /3 = 90°. The particular form obtained 
for the spectral density is a function of the boundary conditions 
applied in the solution of the diffusion equation. Differences 
in the boundary conditions applicable to real physical systems 
might lead to monotonic behavior. Nevertheless, the present 
calculation provides perhaps the simplest model for obtaining 
at least a qualitative understanding of the effects of motional 
restriction on NMR relaxation parameters. 

Illustrative Calculations. Numerical results obtained for NT2 

(N is the number of directly bonded protons with a bond length 
rcH = 1-09 A assumed) as a function of e and corresponding 
to the values of D0, D\, and /3 indicated are summarized in 
Figure 2. Values of parameters are calculated out to B = 180° 
corresponding to a full range of motion (26 = 360°). In addi­
tion, values obtained using the free internal rotation model and 
the same motional parameters, D0, D1, and /3, are indicated. 
In all cases, agreement between these results and the restricted 
motion calculation for 6 = 180° is good, although exact 
agreement is only predicted in the limit D1 — °° as noted above. 
Perhaps the most striking observation is the inflection of several 
of the curves and the fact that for j3 = 90° the changes are 
nonmonotonic. This result is consistent with the expected pe­
riodicity noted in the previous section. 

Numerical results for NT\ analogous to those for NT2 are 
summarized in Figure 3. For motion in the extreme narrowing 
region, the dependence on 6 is qualitatively similar to that of 
TVT2. However, for D0= 106 s_ 1 and D1 = 1010 s_1 , a more 
complex pattern is observed: the ATi curve passes through a 
maximum near 6 = 57°. It is apparent from this result that the 
application of the present model to the analysis of restricted 
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Figure 2. AX2 values plotted as a function of 0 for values Do. A . and /3 
indicated. Results are plotted out to B = 180° corresponding to a 360° 
range of motion. Values with the abcissa indicated by FIR correspond to 
calculations using the free internal rotation model (without boundary 
conditions) and correspond to the same motional parameters, Do, D1, and 
/3. Calculations are for a carbon resonance frequency of 25.2 MHz. 

internal motion for certain motional parameters is suspect. 
Clearly, the AT2 values provide a more useful interpretive tool 
for motion described by the parameters noted above. We note, 
however, that for D0 = 106s_ l and Z)1 = 109or 10" s_ l the 
curves are again monotonic and correspond to the expected 
decrease in T\ in the first case and to the expected increase in 
the second case. In general, the behavior of the NT\ curves as 
a function of 8 is most difficult to interpret physically for 
overall motion DQ in the slow tumbling range, and is also dif­
ficult to interpret if the total expected change in NT\ on going 
from no internal motion to free internal motion is small. These 
conditions apply to the DQ = IO6 s,-1 D\ - IO10 s - 1 case. 

NOE calculations exhibit the same difficulties as the NT\ 
calculations for overall motion in the slow tumbling range 
(Figure 4). We first note that even in the free internal rotation 
case the dependence of the NOE on the various motional pa­
rameters is complex. For overall motion in the slow tumbling 
limit, internal motion characterized by a diffusion coefficient 
D1 = 109S-1 leads to the most pronounced increase in NOE; 
faster or slower internal diffusion produces a smaller increase. 
For Do = 106 s_1 and various values of D; and /3, the deviations 
from monotonic behavior are most significant. For DQ £ IO7 

s_ l , the deviations are less pronounced and generally the 6 = 
180° value is within 10% of the free internal rotation value. 
Since experimental determinations are generally accurate to 
only ~10%, this limitation does not seem severe. 

On the basis of the illustrative calculations presented above, 
it is apparent that application of the present model to the 
analysis of relaxation data obtained for typical macromolecules 
in terms of restricted motion is not straightforward in all cases. 
This is particularly true if the relaxation parameters are non­
monotonic functions of 8. In most, although not all, cases ex­
amined, we note that markedly nonmonotonic behavior in the 
ATi and NOE calculations is correlated with poor agreement 
between the values corresponding to a full range of internal 
motion (28 = 360°) and the free internal rotation calcula­
tion. 

As noted in the previous section, the detailed behavior of the 
calculated relaxation parameters is dependent on the boundary 
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Figure 3. ATi values plotted as a function of 8 for the D0, D1, and /3 values 
indicated. FIR values correspond to the free internal rotation model. 

conditions assumed. For calculations in which the parameters 
for 8 = 180° are in poor agreement with the free internal 
rotation values, the existence of an infinite barrier at 8 = 180° 
apparently has a significant effect on the calculations. Thus, 
application of the model corresponding to these parameters 
will produce results of uncertain validity. Furthermore, in view 
of the correlation between nonmonotonic behavior and poor 
agreement in the free rotation limit noted above, the present 
model may be double- or triple-valued in the region of interest. 
We, therefore, conclude that application of the present cal-
culational model to problems of practical interest is valid only 
for diffusion coefficients for which the agreement of the 8 = 
180° calculation and the free internal rotation calculation is 
reasonably close and for which changes in NT\ and NOE with 
8 are nearly monotonic. Fortunately, these criteria appear to 
be satisfied for a number of typically encountered cases, in­
cluding small proteins (mol wt 20 000) with rotational corre­
lation times of ~20 ns. 

Perhaps the most significant features of the calculated re­
laxation parameters are the small changes observed for 8 < 
25°. Thus, substantial freedom of internal motion corre­
sponding to a range of nearly 50° produces relatively little 
effect on the calculated T1, Ti, or NOE values. This result 
suggests that for a particle in a harmonic well which spends 
proportionately more time near 0 = 0, such restricted dif-
fusional motion will have even less of an effect. Most of the 
changes in the relaxation parameters occurs in the region 45° 
< 8 < 90°. These results suggest in general that occasional 
large angular displacements dominate the relaxation effects 
monitored by NMR. This conclusion is reasonable in light of 
'3C NMR data. Thus, T\ values for the a carbons of various 
proteins typically correspond to isotropic rotational correlation 
times expected for the entire macromolecule26-29""32 although 
these carbons undoubtedly undergo significant but relatively 
restricted internal motion.33 

Multiple Internal Rotations. Application to the Relaxation 
of Methionine Residues in Dihydrofolate Reductase. In a recent 
study of 90% methionine-me//ry/-13C labeled dihydrofolate 
reductase it was noted that the methyl relaxation parameters 
obtained suggest free rotation of the methyl groups as well as 
additional but restricted motion about another molecular bond, 
most likely the CH2-S bond of methionine.22 The theory of 
multiple internal rotations developed by Wallach14 can be 
readily extended to the case in which one of the motions is re­
stricted. Assuming that the two motions are uncorrected— 
which we believe to be a valid assumption for the present 
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Figure 4. '3C-I1H] nuclear Overhauser enhancement (NOE) values plotted 
as a function of 0 for the D0, D1, and /3 values indicated. FIR values cor­
respond to the free internal rotation model. 

problem—the orientational autocorrelation function has the 
form 

G(t)= E dab(i3o)<Labi0oWbb<dbc(l3) 
a,b,b',c,c' 

X d6V(0)A2,c<dcOO3')df<o(/3') e-^ot (24) 

where the d0i(/3) are the reduced Wigner rotation matrices 
used above and the remaining parameters are defined as in the 
free rotation case. The first summation index a is repeated 
since the overall motion is assumed to be isotropic. The angles 
/Jn and /3 correspond to angles between successive internal 
rotation axes and the angle /3' is defined by the final internal 
rotation axis and the C-H relaxation vector. /J0 is defined ar­
bitrarily but is eliminated from the calculations due to the sum 
over a. Although the problem solved by Wallach makes use 
of eq 15 for the A matrix, there is no constraint preventing the 
use of different models for the two rotations leading to different 
expressions for A1 and A2. It is first necessary to note that if 
one rotation is assumed free and the second restricted, the re­
sults are not commutative. In the calculation for methionine 
labeled dihydrofolate reductase, we assume A1 corresponds 
to restricted motion and A2 to the free methyl rotation. The 
latter assumption introduces a bCiC>, into the calculation. Fur­
ther, using the sum rule for the Wigner rotation matrices,27 

the sum over a gives &b,b'- We then have 

G(O = E E |£(M)|2|dic(/3)|2|dcOO3')0|2 

b,c=-2 «=0 

X e x p [ - ( 6 D o + ^ ^ + c W ) r ] (25) 

where D \ corresponds to the restricted motion diffusion process 
and D2 corresponds to the free diffusion process. We note that 
in the limit B —>• 0; we expect that the results should approach 
those obtained for an isotropically tumbling molecule with a 
single free internal rotation. This is borne out using the results 
that in this limit, E(b,0) —* 1, and all other terms in the sum 

over n vanish since the term n2ir2D\/(462) ~* ». Thus, 

G(O8-O^ L t Mdic(£)|2|dc0(/3)|2|2 

b,c = -2n=0 

Xexp[-(6Z>0 + ^ + C W ) , ] 

= E IdcoW exp[-(6A) + C2D2)I] (26) 
c = -2 

as expected. 
In contrast to the above results, if the first motion is free and 

the second restricted, the autocorrelation function has the 
form 
G(t) = E ± dbc(0)Abc>(0)E(c,n)E(c',n) 

b,c.c' = -2n = 0 

X dc0W')dMP') exp[-(6Z)0 + b2Dx + ^ T 1 ) ' ] (27) 

As above, we can consider the effect of restricting 6 to 0. 
Making use of the behavior of E{c,n) in this limit, we ob­
tain 

G(Oe-O- E dbc(p)dbcW)dcoW')dMP') 
b.c.c' 

X exp[-(6£>0 + b2Dx)t] (28) 

It is apparent physically that if the second rotation is restricted 
to zero range, the system should behave as if only one free in­
ternal rotation were permitted. In this case, however, the angle 
between the relaxation C-H vector and the axis of rotation 
depends on both /3 and /3'. For the case /3' = —/3 (Figure Id), 
the internal motion should produce no effect since the axis of 
internal rotation is parallel to the C-H vector. Setting /3' = —/3 
and using the relation for the Wigner rotation matrices27 

•W(/3) = «W(-0) (29) 
we obtain 

C(O = E dbc(P)dbA0)doc(0)doAP) 
b,c,c' = — 2 

Xexp[-(6Z>0 + 62£>i)0 (30) 

Using the sum rule noted previously and performing the sums 
over c and c' then gives: 

G(O = E SMAO exp[-(6Z)0 + b2Dx)t\ = exp[-(6Z)0/)] 
b 

(31) 

as expected. 
We next consider the application of the present calculation 

to the relaxation of the methionine methyl carbons in dihy­
drofolate reductase. On the basis of the crystal structure of 
methionine,34 we have taken /3 = 100° and assumed /3' = 
109.5°. On the basis of eq 25 and the parameter D0 = 8.33 X 
106S-1 (TO = 2 X 10-8 s) determined from measurements on 
the arginine labeled enzyme,35 D\ and D2 were varied to fit the 
data. Relaxation parameters for the narrower methionine 
methyl peaks can be predicted with reasonable accuracy using 
a model which assumes two free internal rotations most 
probably corresponding to motion about the S-CH3 and 
CH2-S bonds.22 However, for the broader peaks with lower 
NOE, the present model leads to a significantly better fit. One 
series of calculations is summarized in Table I. We note that 
using the present theory, parameters corresponding to all of 
the methionine residues can be calculated using a given set of 
D\ and D2 values and varying only the range of motion about 
the CH2-S bonds. In particular, using the data reported pre­
viously,22 the present calculation gives good agreement using 
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Figure S. Calculated ATi values for (a) a two-state model as described 
in ref 18 with parameters D0= 107 s-1,/3 = 70.53°, and TA = TB = 1.67 
X a -12 s and (b) a restricted diffusion model as developed here with DQ 
= 107S-1,0 = 70.53°, and D1 = 10" s"1; results are plotted as a function 
of 9. 

Table I. Theoretical 13C NMR Parameters for a Model (Equation 
25) Corresponding to Methionine Relaxation in Dihydrofolate Re­
ductase 

Meg 

0 
25 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 

135 
180 

AT,, s 

0.587 
0.696 
0.973 
1.072 
1.180 
1.294 
1.407 
1.513 
1.603 
1.673 
1.721 
1.748 
1.764 
1.900 

NT2, s 

0.094 
0.113 
0.165 
0.186 
0.210 
0.237 
0.266 
0.294 
0.321 
0.342 
0.358 
0.366 
0.362 
0.422 

NOE 

1.42 
1.44 
1.53 
1.56 
1.60 
1.65 
1.70 
1.75 
1.79 
1.82 
1.85 
1.86 
1.83 
1.94 

" Calculations based on D0 = 8.33 X 106 s" 
D2 = 4.0 X 1010 s-', /3 = 80° (complement of 
(complement of the tetrahedral angle). 

KD) = 2.0X10 l 0s- ' , 
100°), and 8' = 70.53° 

Di = 2X 1010s-1 ,£>2 = 4 X 10 1 0 S' 1 , and a range of motion 
(20) varying from ~ 100° for the broadest peaks to 180-360° 
for the narrower peaks. For example, for the methionine res­
onance furthest upfield in the enzyme-methotrexate binary 
complex measured relaxation parameters NT\ = 1.11 s, v = 
5 Hz (NTi = 191 ns) and NOE « 1.622 are in close agreement 
with the entry in Table I for 8 = 55°. The fit can be improved 
slightly if D\ and D2 are allowed to vary; however, the pa­
rameters noted cover the whole range of data reasonably well 
(Table II of ref 22). These values should not be taken too lit­
erally, however, since, as we have noted, the details of the 
theoretical results obtained here are dependent on the partic­
ular boundary conditions assumed. We can conclude, however, 
that a model of the present type is capable of providing a sig­
nificantly better description of the relaxation data than a model 
assuming either one or two free internal rotations. It is also 
clear that differences in the allowed range of motion rather 
than differences in the diffusion rates may be the primary 
factor leading to differences in the relaxation parameters 
among a given set of protein residues. Of course, larger am­
plitude motion on a time scale slower than overall protein 
tumbling is also consistent with the present calculations. The 
effects of motional restriction differ from the variations re­
flecting differences in diffusion rates and in general a complete 
set of relaxation parameters should enable at least a partial 
separation of these effects. 

Comparison with a Two-State Model. A variety of models 
have been proposed recently to describe the relaxation effects 
produced by internal motion. In general, there are significant 
qualitative differences which, while not uniquely defining the 
detailed dynamics of the system, can provide substantial insight 
into the characteristics of the motion responsible for the ob­
served relaxation parameters. This point may be illustrated by 
a comparison of the results obtained using the present restricted 
diffusion model with those obtained from a two-state model 
in which the relaxation vector is restricted to the orientations 
4> = ±8. NT\ values obtained with the parameters Do = 107 

s-1, /3 = 70.53°, Dj = 101' s - ' for the first model and TA = T B 

= 1.67 X 10 - 1 2 s for the second are given in Figure 5. The use 
of the relation D1 = l / (6 r A ) = 1 / ( 6 T B ) in order to obtain 
equivalent rates of internal motion is somewhat arbitrary; 
however, since the condition D0 « D-„ 1/TA , 1 /T B is satisfied, 
the calculated relaxation parameters do not depend strongly 
on the particular choice of internal diffusion rate for either 
model. The dramatically different dependence of the computed 
NT\ values on 0 can, in some cases, be used to choose the op­

timal model, thereby providing information on the dynamics 
of the system under study. For example, we have recently 
proposed that the internal motion of the proline ring can be 
described by a two-state model reflecting jumps between the 
two puckered forms of the molecule.18 For 8 = 30°, a typical 
displacement for the proline C 7 carbon,'8 NT] increases from 
65 to 136 ms using the two-state model but only to 83 ms using 
the restricted diffusion model. An equivalent increase in AT 1 

would require 8 = 55° (range = 110°), a physically unac­
ceptable result. These results are consistent with the proposed 
ring-puckering model and rule out a square-well potential 
model as being a reasonable representation for the proline 
molecule. 

Conclusions 

The effect of restricted internal motion on 13C N M R re­
laxation parameters is an important practical problem, par­
ticularly in studies of large biomolecules. In the present study 
we have developed a model assuming diffusional motion about 
an intramolecular bond restricted by the application of infinite 
boundary conditions. In general the results are physically in­
tuitive; NT\, NT2, and NOE values change from the results 
expected in the absence of internal motion to results close to 
those expected for free internal motion as the allowed range 
of motion is increased from 0 to 180°. In a majority of cases 
corresponding to parameters of practical interest, these 
changes are monotonic or nearly monotonic. However, for 
overall motion such that £>o ~ 106 s~', nonmonotonic changes 
of NT] and NOE were derived. A useful criterion for appli­
cation of the present model is the agreement of the relaxation 
parameters corresponding to a full range of motion, 28 = 360°, 
with parameters derived using the free internal rotation model. 
For cases in which this agreement is poor, the detailed results 
of the calculation appear to be strongly dependent on the 
boundary conditions applied and the general applicability is 
suspect. Fortunately, the results obtained for diffusion coef­
ficients down to 107S - 1 which is a rate expected for small (mol 
wt 20 000) proteins appear to be well behaved and so should 
be useful in a number of practical calculations. Application 
to low molecular weight molecules, e.g., peptides in which 
motional restriction may be significant, appears to be 
straightforward. Results applied to the internal motion of 
methionine residues of dihydrofolate reductase indicate that 
the restricted motion model can lead to significantly better 
agreement with experimental data than a model assuming free 
internal rotations. It should be emphasized, however, that the 
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present results are not necessarily applicable to relaxation rates 
obtained for other nuclei. For example, 1H relaxation rates in 
proteins appear to be dominated by spin diffusion.36 This 
mechanism is inoperative for' 3C relaxation under conditions 
of proton decoupling and assuming poor 13C-13C coupling due 
to dilute spins and the low 13C magnetogyric ratio. 

Note Added in Proof. Subsequent to the submission of this 
manuscript we became aware of an equivalent result obtained 
by R. J. Wittebort and A. Szabo (J. Chem. Phys., in press). 
The results obtained are in complete agreement with those 
presented here. We note further that in the case of successive 
restricted rotations, it is necessary to specify both the angles 
between successive rotation axes as well as the direction about 
which restricted diffusion occurs. For certain cases as discussed 
here (eq 27-31), this can be accomplished by an appropriate 
choice of /3. More generally, Wittebort and Szabo point out 
that the inclusion of the Euler angle a provides a convenient 
means of specifying this parameter. 
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Appendix A 

Using eq 9 and 11 in eq 3 gives a series of terms as a function 
of the summation index n. Each of these terms can be written 
as the product of a function of m and the complex conjugate 
function of m'. The term for n = 0 thus has the form F(m,n = 
0)F*(m',n = 0): 

F{m,n = 0)F*(m',n = 0) 

= 129 \e
exP^im^o)<i(j)o — J exp{-im'd>,)d<t>, 

sin md sin m'd 

m6 m'd 
(Al) 

since the functions are real, E(m,0) = F(m,0). 
The remaining terms have the form F{m,n)F*(m',n) 

where 

F{m,n) = 
vie s: cos md> cos 

+ i sin md> cos 

|"mr(4> + fl)"| 

L 18 J 
mr{4> + 9) 

28 
dd> (A2) 

For n odd this becomes 

(_n(«+o/2 s: . /mrd>\ . 
sin md> sin I - T r - ) dd> 

(A3) 

For n even this becomes 

F(m,n even) = ( - Q " / 2 

vie s: mrd> 
cos md) cos—— dd> (A4) 

ie 
It is apparent that the factors ( -1 )<"+' V2 in eq A3 and (-1)"I2 

in eq A4 will give 1 in the product F(m,n)F*(m,n). These 
factors can thus be dropped in defining E(m,n). Integration 

then gives 

E(m,n odd) = 
vie 

sin (mB-f) sin (m9 + f) 

me--
mt me + -

(A5) 

E(m,n even) = 
Vl 

I a n7r\ • I , nir\ 
I me——I s\nlm+—J 

mt me + 

(A6) 

These results can be combined to give the results in eq 12 and 
14. 
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